首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2474篇
  免费   167篇
  国内免费   167篇
  2024年   5篇
  2023年   22篇
  2022年   17篇
  2021年   41篇
  2020年   30篇
  2019年   33篇
  2018年   52篇
  2017年   43篇
  2016年   39篇
  2015年   53篇
  2014年   74篇
  2013年   83篇
  2012年   68篇
  2011年   69篇
  2010年   49篇
  2009年   152篇
  2008年   136篇
  2007年   145篇
  2006年   125篇
  2005年   131篇
  2004年   98篇
  2003年   83篇
  2002年   72篇
  2001年   59篇
  2000年   79篇
  1999年   83篇
  1998年   77篇
  1997年   72篇
  1996年   57篇
  1995年   52篇
  1994年   70篇
  1993年   65篇
  1992年   57篇
  1991年   61篇
  1990年   55篇
  1989年   42篇
  1988年   51篇
  1987年   50篇
  1986年   37篇
  1985年   39篇
  1984年   34篇
  1983年   13篇
  1982年   25篇
  1981年   36篇
  1980年   29篇
  1979年   19篇
  1978年   8篇
  1977年   11篇
  1976年   2篇
  1974年   2篇
排序方式: 共有2808条查询结果,搜索用时 15 毫秒
21.
22.
23.
Details of the cuticular, epidermal and anatomical features of the leaves of Cathaya argyrophylla Chun & Kuang, are described and compared with those of three species of Keteleeria (K. davidiana (Bertrand) Beissner, K. fortunei (Murray) Carriere, and K. chien-peii Flous). The study supports the creation of Cathaya Chun & Kuang as a new genus of the Pinaceae.  相似文献   
24.
The foliage development ofDryopteris crassirhizoma Nakai was quantitatively estimated by measurements of shape and size of leaves from different developmental stages of sporophytes, to lead to an understanding of the life history characteristics of the species. The number of midrib branches (NV, number of veins) of the leaf corresponds to the leaf-shape complexity (DI, dissection index; shape complexity from a circle) and length of leafblade (BL). Some quantitative characters, such as leaf uniformity (decrease in NV variation), changes in shape and increase in number of leaves, vary progressively during foliage formation. The sequence of foliage development can be quantified using the parameter NV: for example, 15-NV for leaf uniformity, 30-NV for leaf-shape change from triangular to oblanceolate, 60-NV for increase in leaf number and leaf fertility in the course of sporophyte ontogeny. Contribution No. 3297 from the Institute of Low Temperature Science, Hokkaido University.  相似文献   
25.
Eutrophication is a major threat to freshwater ecosystems worldwide that affects aquatic biota and compromises ecosystem functioning. In this study, we assessed the potential use of leaf decomposition and associated decomposer communities to predict stream eutrophication. Because leaf quality is expected to affect leaf decomposition, we used five leaf species, differing in their initial nitrogen concentration. Leaves of alder, chestnut, plane, oak and eucalyptus were placed in coarse-mesh bags and immersed in six streams along an eutrophication gradient to assess leaf decomposition and the structure of associated decomposer communities. A hump-shaped relationship was established between leaf decomposition and the eutrophication gradient for all leaf species, except for eucalyptus. Invertebrate biomass and density as well as fungal biomass and sporulation were lowest at the extremes of the gradient. Leaf-associated invertebrate and fungal assemblages were mainly structured by stream eutrophication. The percentage of shredders on leaves decreased, whereas the percentage of oligochaeta increased along the eutrophication gradient. The Iberian Biological Monitoring Working Party Index (IBMWP) applied to benthic invertebrates increased from oligotrophic to moderately eutrophic streams and then dropped sharply at highly and hypertrophic streams. Overall, leaf decomposition was a valuable tool to assess changes in stream water quality, and it allowed the discrimination of sites classified by the IBMWP within class I and class IV. Moreover, decomposition of most leaf species responded in a similar way to eutrophication when decomposition was normalized by the quality of leaves.  相似文献   
26.
Temperate seagrass meadows form valuable ecosystems in coastal environments and present a distinct seasonal growth. They are threatened by an increasing amount of stressors, potentially affecting their capacity to recover from disturbances. We hypothesized that their resilience to disturbances is affected by seasonal dynamics. Hence, we investigated the effect of the timing of the disturbance on seagrass Leaf Area Index (as a proxy for presence, or ‘visible’ status), recovery from disturbance (as a proxy for meadow resilience), and rhizome carbohydrates (as a proxy for longer term resilience) by a series of four disturbance-recovery field experiments spread over the growing season at two sites in Shandong Province, China. During the course of the growing season, we found the highest recovery at the start of the growing season, lowest recovery when Leaf Area Index peaked around mid-growing season, and intermediate recovery when Leaf Area Index decreased at the end of the growing season. Rhizome carbohydrates were not affected by disturbances during any of the four experimental periods and could not explain the low recovery during mid-growing season. The two sites differed in exposure and in the occurrence of incidents like a green tide and storms, which affected recovery. However, general patterns were similar; timing strongly influenced the indicator of meadow resilience and its correlation with presence during the two main seagrass growth phases. Our results emphasize the importance of carefully considering timing in the evaluation of seagrass resilience in temperate systems. Furthermore, our study implies that, to effectively protect seagrass beds, conservation management should aim at avoiding disturbances particularly during the peak of the growing season, when resilience is lowest.  相似文献   
27.
SEM studies of the spathe structures in the two closely related genera Cryptocoryne and Lagenandra show differences between the inner and outer surfaces, as well as in cell structures in the various parts of the spathe. The cell structure reveals patterns mat makes it possible to depict homologous structures of the spathe, even though the spathes of the two genera look different. The basal part of the kettle has a mucilage covering of the cells, interpreted as a hitherto unnoticed food source. The cells of the inner surface of the kettle and tube have downward pointing trichomes. On the second day of flowering these collapse and sink into the cell lumen, which is suggested to create a unique lattice-like structure that enables the insects to climb out of the kettle and tube. The cell structure of the flap shows that it is a prolongation and continuation of the spathe tube margin.  相似文献   
28.
To better understand the requirement of light and soil water conditions in the invasion sites of two invasive weeds, Mikania micrantha and Chromolaena odorata, we investigated their structural and physiological traits in response to nine combined treatments of light [full, medium and low irradiance (LI)] and soil water (full, medium and low field water content) conditions in three glasshouses. Under the same light conditions, most variables for both species did not vary significantly among different water treatments. Irrespective of water treatment, both species showed significant decreases in maximum light saturated photosynthetic rate (P max), photosynthetic nitrogen-use efficiency, and relative growth rate under LI relative to full irradiance; specific leaf area, however, increased significantly from full to LI though leaf area decreased significantly, indicating that limited light availability under extreme shade was the critical factor restricting the growth of both species. Our results also indicated that M. micrantha performed best under a high light and full soil water combination, while C. odorata was more efficient in growth under a high light and medium soil water combination.  相似文献   
29.
We assessed the effect of salinity on plant growth and leaf expansion rates, as well as the leaf life span and the dynamics of leaf production and mortality in seedlings of Avicennia germinans L. grown at 0, 170, 430, 680, and 940 mol m−3 NaCl. The relative growth rates (RGR) after 27 weeks reached a maximum (10.4 mg g−1 d−1) in 170 mol m−3 NaCl and decreased by 47 and 44% in plants grown at 680 and 940 mol m−3 NaCl. The relative leaf expansion rate (RLER) was maximal at 170 mol m−3 NaCl (120 cm m−2 d−1) and decreased by 57 and 52% in plants grown at 680 and 940 mol m−3 NaCl, respectively. In the same manner as RGR and RLER, the leaf production (P) and leaf death (D) decreased in 81 and 67% when salinity increased from 170 to 940 mol m−3 NaCl, respectively. Since the decrease in P with salinity was more pronounced than the decrease in D, the net accumulation of leaves per plant decreased with salinity. Additionally, an evident increase in annual mortality rates (λ) and death probability was observed with salinity. Leaf half-life (t 0.5) was 425 days in plants grown at 0 mol m−3 NaCl, and decreased to 75 days at 940 mol m−3 NaCl. Thus, increasing salinity caused an increase in mortality rate whereas production of new leaves and leaf longevity decreased and, finally, the leaf area was reduced.  相似文献   
30.
We investigated leaf and shoot architecture in relation to growth irradiance (Qint) in young and mature trees of a New Zealand native gymnosperm Agathis australis (D. Don) Lindl. to determine tree size-dependent and age-dependent controls on light interception efficiency. A binomial 3-D turbid medium model was constructed to distinguish between differences in shoot light interception efficiency due to variations in leaf area density, angular distribution and leaf aggregation. Because of the positive effect of light on leaf dry mass per area (MA), nitrogen content per area (NA) increased with increasing irradiance in both young and mature trees. At a common irradiance, NA, MA and the components of MA, density and thickness, were larger in mature trees, indicating a greater accumulation of photosynthetic biomass per unit area, but also a larger fraction of support biomass in older trees. In both young and mature trees, shoot inclination angle relative to horizontal, and leaf number per unit stem length decreased, and silhouette to total leaf area ratio (SS) increased with decreasing irradiance, demonstrating more efficient light harvesting in low light. The shoots of young trees were more horizontal and less densely leafed with a larger SS than those of mature trees, signifying greater light interception efficiency in young plants. Superior light harvesting in young trees resulted from more planar leaf arrangement and less clumped foliage. These results suggest that the age-dependent and/or size-dependent decreases in stand productivity may partly result from reduced light interception efficiency in larger mature relative to smaller and younger plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号